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Introduction 

Throughout the semester, the lab assignments in ME 375 have helped students become 

familiar with essential control system concepts as well as the various subsystems of the Skitter 

robot. The final project provides an opportunity to apply the knowledge gained throughout the 

course to meet specific project objectives. The primary goal of the project is to design a 

controller and program the Skitter robot to operate autonomously through a series of tasks. The 

robot must follow a line around a track, and after completing one lap, it will switch to a different 

mode where it moves forward and backward to track and follows an object in front of it. 

The Skitter robot consists of several key subsystems that are integral to its overall 

performance. These subsystems include the encoders, ultrasonic sensors, line follower sensor, 

motors, and the Arduino controller. 

The robot used in the project is the AndyMark Skitter Classroom Robot (model AM-

55150). It is equipped with various components and sensors, such as an Arduino Mega, two DC 

motors with encoders, a servo motor, an ultrasonic sensor, and a line follower sensor. The 

Arduino Mega features 54 digital input/output pins, 4 serial ports, a USB port, and a reset button. 

The DC motors are equipped with internal gearboxes and encoders, with each 12V motor capable 

of reaching up to 245 RPM and generating a maximum torque of approximately 410 g-cm. The 

ultrasonic sensor has a detection range of 2 cm to 400 cm and offers high accuracy (± 3 mm). 

The line follower sensor is able to detect dark lines within a 6 mm range. These subsystems are 

all essential for achieving the objectives outlined in the final project. 

Michael Barth wrote the introduction and explanations of subsystem characterizations. 

Jackson Emerson wrote the proposed controller structure and design and potential problems.  

Subsystem Characterization  
The encoders play a crucial role in the system, as their data is used to accurately switch 

between the line-following mode and the object-following mode. The encoder output represents 

how far the wheels have rotated. From testing, counts per 360-degree rotation were found and 

tabulated in Table 1. These values can be used to estimate the distance the robot has traveled by 

performing some basic calculations. By knowing the encoder output, the number of rotations can 

be determined, and multiplying this by the wheel's circumference provides an approximate 

distance traveled. This information can be used to trigger the transition to line-following mode 

after completing a lap. 

Table 1: Motor Encoder Count 

Encoder  Counts per 360-degree rotation 

Right  -175.6 

Left  169.5 
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The ultrasonic sensor, located at the front of the Skitter robot, is essential for the object-

following mode. It measures distance in meters. The robot needs to maintain a distance of 

roughly 9 inches (0.2286 meters) from an object. When the object moves farther away, the robot 

will move forward; if the object comes too close, the robot will reverse. To avoid jittery 

movements, a steady state error of 0.5 inches is implemented.  

The line-following sensor provides multiple outputs that help determine the robot's 

position relative to the line. It features three binary outputs indicating whether the robot is to the 

left, on, or to the right of the line. Additionally, the sensor has a line position output that indicates 

how close the robot is to the center of the line, with values ranging from -1 to 1, where 0 means 

the robot is centered. This output offers more precise information than a typical binary output. 

The line-following sensor is critical for completing the first lap. The binary outputs can be used 

in a state machine to guide the robot's movements—deciding whether it should turn left, right, or 

continue straight. Through testing, the optimal motor speed ranges can be determined to 

maximize the robot's performance in these states. 

Finally, the motor-gearbox wheels make up the last subsystem. The robot's behavior has 

been modeled as a first-order system, leading to the following transfer function and single plant 

model used for both wheels given by Equation 1. To determine the static gain and time constant, 

a Pulse Generator was employed with the following parameters: amplitude of 1, period of 1 

second, pulse width of 50%, and a phase delay of 0 seconds. Using the data obtained from this 

setup, the static gain and time constant were calculated for both motors. Since the values were 

relatively similar, the average of the two motors’ static gain and time constant was taken to create 

a single, unified plant model. 

𝑃(𝑠) =
𝐾

𝜏𝑠 + 1
=

5.07

0.079𝑠 + 1
 

Equation 1: Wheel Plant Model 

Further testing was performed to acquire deadband values for each motor. These 

parameters are shown in Table 2. The upper bound of the deadband is the voltage needed for the 

motors to overcome the force of friction the wheels experience in the forward direction, also 

known as friction compensation. 

Table 2: Motor Deadband Values 

Motor  Deadband (V) 

Right Motor  0 – 0.17  

Left Motor  0 – 0.22 
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Proposed Controller Structure and Design  

The control structure of this robotic system integrates multiple sensors, feedback loops, 

and controllers to achieve precise and adaptive behavior. At its core, the system employs a 

closed-loop control strategy to maintain stability and respond dynamically to changes in its 

environment. Sensors, such as the line and ultrasonic sensors, continuously monitor the robot's 

surroundings, while encoders track the velocity and position of its wheels. This data is processed 

through the Arduino-based control unit, which orchestrates the decision-making process via a 

state machine. 

Feedback from the encoders enables the calculation of real-time wheel velocities, which 

are compared to the target velocities defined by the state machine. These discrepancies are 

minimized by PID controllers, ensuring that the robot accurately executes the desired motions. 

Friction compensation further refines control by adjusting for mechanical losses, ensuring 

smooth and reliable operation. The control structure, as illustrated in the schematic above, 

highlights the interconnected roles of sensing, decision-making, and actuation, which 

collectively govern the robot's behavior. 

 

Figure 1: Control Structure Schematic 

 The heart of this control system lies in the state machine, which dictates the robot's 

actions based on sensor inputs and system feedback. Each state corresponds to a specific 

movement or action, such as turning, moving forward, or stopping. By transitioning between 

these states, the robot adapts to its environment and maintains alignment with its operational 
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objectives. The following section delves into the state machine's design and functionality, 

illustrating its pivotal role in enabling autonomous control. 

In line-following mode, the robot evaluates the distance it has traveled to determine 

whether it should remain in this mode or transition to object-tracking mode. While in line-

following mode, the robot continuously monitors its position relative to the line and adjusts its 

trajectory accordingly. The adjustments are based on the robot’s current position reading and can 

be classified into five distinct states. First, if the line position value falls within the range of -0.2 

to 0.2, the robot continues to move straight by maintaining equal speeds on both wheels. Second, 

for values between -0.6 and -0.2, the robot makes a slight right adjustment by stopping the left 

wheel while allowing the right wheel to continue at its normal speed. Third, for values between 

0.2 and 0.6, the robot makes a slight left adjustment by stopping the right wheel while the left 

wheel continues. Fourth, if the line position value exceeds 0.6, the robot makes a large left 

adjustment by reversing the right wheel at 1.2 times its normal speed while the left wheel moves 

forward. Lastly, if the line position value is less than -0.6, the robot makes a large right 

adjustment by reversing the left wheel at 1.2 times its normal speed while the right wheel moves 

forward. 

The distinction between slight and large adjustments lies in the robot's wheel speeds. For 

slight adjustments, one wheel stops while the other continues, whereas for large adjustments, one 

wheel reverses direction to create a sharper turn. These states enable the robot to reacquire the 

line effectively while still maintaining its ability to drive straight when appropriate. Once the 

robot completes one full lap, its encoder value is compared to a predetermined threshold 

corresponding to the track’s total distance. When the encoder value exceeds this threshold, the 

robot transitions from line-following mode to object-tracking mode, signifying the next phase of 

its operation. 

In object-tracking mode, the robot uses its ultrasonic sensor to continuously monitor the 

distance to the closest object in front of it. The desired range is 9 inches, plus or minus 0.5 

inches, meaning the robot should stop within this 1-inch range. If the distance to the object is 

greater than 9.5 inches, the robot moves forward until the value falls below this threshold. 

Conversely, if the object is closer than 8.5 inches, the robot moves backward. Once the robot 

positions itself within the range of 8.5 inches to 9.5 inches, it stops and maintains its position 

while continuing to track the object. Any deviation from this range causes the robot to adjust its 

position accordingly to stay within the desired distance. 

For a clearer view of the robot’s transitions and states, refer to Figure 2. 
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Figure 2: State Machine Diagram 

The control system consists of six different feedback loops to ensure that the robot 

operates with optimal precision and stability. The first feedback loop is a PID controller, which is 

used to regulate motor speed. The PID controller was selected because of its effectiveness at 

handling error correction, providing smooth and responsive control by adjusting the proportional, 

integral, and derivate terms. The values of each for the PID being 0.4, 0.3, and 0.1 respectively, 

but subject to change in actual testing conditions. Friction compensation is handled by a 

proportional controller, which adjusts the motor speed to account for surface variations, with a 

gain corresponding to its deadband values, 0.17 and 0.22. Deadband values for each motor were 

determined by slowly incremating motor voltage, until motor rotation was achieved.  

In addition, the ultrasonic sensor and line follower sensor provide continuous feedback to 

adjust the robot’s position. The ultrasonic sensor helps maintain appropriate distance from 

obstacles, while the line follower sensor keeps the robot aligned with the black line. For both, a 

proportional gain is used of 1. Threshold values were determined by scoping outputs when the 

robot was on the track. Lastly, feedback from the left and right motor encoders ensures accurate 

tracking of the robot’s position and velocity, allowing for micro-adjustments to maintain precise 

movement. 
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Potential Problems 

 When implementing the control scheme, several challenges may arise. One of the most 

fundamental issues is the potential failure of the state machines to transition properly between 

states. This could stem from various causes, with the most likely being mis-calibrated transition 

limits. To address this, the system should undergo extensive testing under controlled conditions 

to verify that state transitions occur correctly. If discrepancies are found, micro-adjustments can 

be made to fine-tune the transition parameters. Additionally, it is essential to thoroughly review 

the code to ensure that the state machine includes all necessary states, that states are correctly 

labeled, and that transitions are logically defined. 

A challenge with the line follower sensor is ensuring accurate interpretation of its 

continuous position value, which indicates the robot’s alignment relative to the black line. 

Calibration involves testing under real conditions to map sensor outputs to positions such as 

centered on the line, partially off, or on the white surface. Environmental factors like lighting can 

affect readings, so periodic re-tuning is crucial for consistent performance. The continuous 

position data allows for smoother and more precise alignment adjustments. Scopes attached to 

the outputs of the line follower sensor blocks in Simulink will allow for testing to be performed 

with the robot connected to a personal laptop. Using this setup, critical information for 

debugging will be shown as real time sensor readings and robot response can be analyzed.  

While the line follower is running, the tracking of the encoder is also taking place. 

However, the robot has to make micro-adjustments continuously as the robot is following the 

line. This can cause the encoder to have a greater value than is originally anticipated. If it is too 

high, then the comparison to know when it needs to transition into object tracking will occur too 

soon. To account for this, the average of the two motors encoder values will be taken. This will 

then provide a more reasonable number to track for when to transition. Additionally, slight 

adjustments to our threshold value corresponding to one lap can be made.  
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