Purdue University

Skitter Robot Control

Michael Barth & Jackson Emerson
11/29/2024

Systems, Measurement, and Control 11

School of Mechanical Engineering
Purdue University
585 Purdue Mall
West Lafayette, IN 47907

Table of Contents
INEPOAUCTIONcoiiiiiiiiiieeee ettt ettt ettt e e e et e e et e e eeeeeeeeeeeanaes

Subsystem CharaCteriZAtIONcc.eeivieriieeiieieeetiesieeiteete et e siteeteesbeesaeesbeesseessseenseesnseenseesnseennns
Proposed Controller Structure and DESIZNccooviiiiiiiiiiieciie et

POENTIAL PTODIEIIIS ..o et e e e e e e ettt e e e e e e e e e e e e eaeeeeeeeeeeaaaaeeeeeeeeeaanann

Introduction

Throughout the semester, the lab assignments in ME 375 have helped students become
familiar with essential control system concepts as well as the various subsystems of the Skitter
robot. The final project provides an opportunity to apply the knowledge gained throughout the
course to meet specific project objectives. The primary goal of the project is to design a
controller and program the Skitter robot to operate autonomously through a series of tasks. The
robot must follow a line around a track, and after completing one lap, it will switch to a different
mode where it moves forward and backward to track and follows an object in front of it.

The Skitter robot consists of several key subsystems that are integral to its overall
performance. These subsystems include the encoders, ultrasonic sensors, line follower sensor,
motors, and the Arduino controller.

The robot used in the project is the AndyMark Skitter Classroom Robot (model AM-
55150). It is equipped with various components and sensors, such as an Arduino Mega, two DC
motors with encoders, a servo motor, an ultrasonic sensor, and a line follower sensor. The
Arduino Mega features 54 digital input/output pins, 4 serial ports, a USB port, and a reset button.
The DC motors are equipped with internal gearboxes and encoders, with each 12V motor capable
of reaching up to 245 RPM and generating a maximum torque of approximately 410 g-cm. The
ultrasonic sensor has a detection range of 2 cm to 400 cm and offers high accuracy (+ 3 mm).
The line follower sensor is able to detect dark lines within a 6 mm range. These subsystems are
all essential for achieving the objectives outlined in the final project.

Michael Barth wrote the introduction and explanations of subsystem characterizations.
Jackson Emerson wrote the proposed controller structure and design and potential problems.

Subsystem Characterization

The encoders play a crucial role in the system, as their data is used to accurately switch
between the line-following mode and the object-following mode. The encoder output represents
how far the wheels have rotated. From testing, counts per 360-degree rotation were found and
tabulated in Table 1. These values can be used to estimate the distance the robot has traveled by
performing some basic calculations. By knowing the encoder output, the number of rotations can
be determined, and multiplying this by the wheel's circumference provides an approximate
distance traveled. This information can be used to trigger the transition to line-following mode
after completing a lap.

Table 1: Motor Encoder Count

Encoder Counts per 360-degree rotation

Right -175.6
Left 169.5

The ultrasonic sensor, located at the front of the Skitter robot, is essential for the object-
following mode. It measures distance in meters. The robot needs to maintain a distance of
roughly 9 inches (0.2286 meters) from an object. When the object moves farther away, the robot
will move forward; if the object comes too close, the robot will reverse. To avoid jittery
movements, a steady state error of 0.5 inches is implemented.

The line-following sensor provides multiple outputs that help determine the robot's
position relative to the line. It features three binary outputs indicating whether the robot is to the
left, on, or to the right of the line. Additionally, the sensor has a line position output that indicates
how close the robot is to the center of the line, with values ranging from -1 to 1, where 0 means
the robot is centered. This output offers more precise information than a typical binary output.
The line-following sensor is critical for completing the first lap. The binary outputs can be used
in a state machine to guide the robot's movements—deciding whether it should turn left, right, or
continue straight. Through testing, the optimal motor speed ranges can be determined to
maximize the robot's performance in these states.

Finally, the motor-gearbox wheels make up the last subsystem. The robot's behavior has
been modeled as a first-order system, leading to the following transfer function and single plant
model used for both wheels given by Equation 1. To determine the static gain and time constant,
a Pulse Generator was employed with the following parameters: amplitude of 1, period of 1
second, pulse width of 50%, and a phase delay of 0 seconds. Using the data obtained from this
setup, the static gain and time constant were calculated for both motors. Since the values were
relatively similar, the average of the two motors’ static gain and time constant was taken to create
a single, unified plant model.

K 507
zs+1 0.079s+1

Equation 1: Wheel Plant Model

P(s) =

Further testing was performed to acquire deadband values for each motor. These
parameters are shown in Table 2. The upper bound of the deadband is the voltage needed for the
motors to overcome the force of friction the wheels experience in the forward direction, also
known as friction compensation.

Table 2: Motor Deadband Values

Motor Deadband (V)

Right Motor 0-0.17

Left Motor 0-0.22

Proposed Controller Structure and Design

The control structure of this robotic system integrates multiple sensors, feedback loops,
and controllers to achieve precise and adaptive behavior. At its core, the system employs a
closed-loop control strategy to maintain stability and respond dynamically to changes in its
environment. Sensors, such as the line and ultrasonic sensors, continuously monitor the robot's
surroundings, while encoders track the velocity and position of its wheels. This data is processed
through the Arduino-based control unit, which orchestrates the decision-making process via a
state machine.

Feedback from the encoders enables the calculation of real-time wheel velocities, which
are compared to the target velocities defined by the state machine. These discrepancies are
minimized by PID controllers, ensuring that the robot accurately executes the desired motions.
Friction compensation further refines control by adjusting for mechanical losses, ensuring
smooth and reliable operation. The control structure, as illustrated in the schematic above,
highlights the interconnected roles of sensing, decision-making, and actuation, which
collectively govern the robot's behavior.

Ardunino

Haxt Stats

State Machine

On
Line

‘Target Left wheel Velochy

Left

Right Targot Luft Whool Velosity . Left Friction
| LeRPID [PIDVolociy - oo stioon |

- —

Slight
Left Target Right Wheel Velocity
" - D Feedback— Friction Feedback—
) Siight . Current Left Whesl Velocity—— Leit wheel Movement | ol
Ultrasonic Right Robot Position -

Line Sensor ‘

Sensor Input Right Wheel Movemen -

- Target Right Wheel Velocity
Forward

Backward

»
D ek Right Friction

RghtPID —PIDVelocity - (-0 moensatioon |

Stop [i ‘

- Friction Feedback
- PID Feedback

Lot Encoder | 1000 Toul value Curront Loft Whas! Veloolty
Left Encoder to
" Velocity

Encoder Valus

Curront Right Wheel Velocity ~ Current Right Wheel Velocity

Right ¥ Eneoder Total Value
Encoder [Right Encoder
o Velocity

Encoder Valug

Right Encoder Feedback Loop

Left Encoder Fesdback Laop-

Ulirasonic Sensor Feedback L

Line Follower Feadback Loop

Figure 1: Control Structure Schematic

The heart of this control system lies in the state machine, which dictates the robot's
actions based on sensor inputs and system feedback. Each state corresponds to a specific
movement or action, such as turning, moving forward, or stopping. By transitioning between
these states, the robot adapts to its environment and maintains alignment with its operational

objectives. The following section delves into the state machine's design and functionality,
illustrating its pivotal role in enabling autonomous control.

In line-following mode, the robot evaluates the distance it has traveled to determine
whether it should remain in this mode or transition to object-tracking mode. While in line-
following mode, the robot continuously monitors its position relative to the line and adjusts its
trajectory accordingly. The adjustments are based on the robot’s current position reading and can
be classified into five distinct states. First, if the line position value falls within the range of -0.2
to 0.2, the robot continues to move straight by maintaining equal speeds on both wheels. Second,
for values between -0.6 and -0.2, the robot makes a slight right adjustment by stopping the left
wheel while allowing the right wheel to continue at its normal speed. Third, for values between
0.2 and 0.6, the robot makes a slight left adjustment by stopping the right wheel while the left
wheel continues. Fourth, if the line position value exceeds 0.6, the robot makes a large left
adjustment by reversing the right wheel at 1.2 times its normal speed while the left wheel moves
forward. Lastly, if the line position value is less than -0.6, the robot makes a large right
adjustment by reversing the left wheel at 1.2 times its normal speed while the right wheel moves
forward.

The distinction between slight and large adjustments lies in the robot's wheel speeds. For
slight adjustments, one wheel stops while the other continues, whereas for large adjustments, one
wheel reverses direction to create a sharper turn. These states enable the robot to reacquire the
line effectively while still maintaining its ability to drive straight when appropriate. Once the
robot completes one full lap, its encoder value is compared to a predetermined threshold
corresponding to the track’s total distance. When the encoder value exceeds this threshold, the
robot transitions from line-following mode to object-tracking mode, signifying the next phase of
its operation.

In object-tracking mode, the robot uses its ultrasonic sensor to continuously monitor the
distance to the closest object in front of it. The desired range is 9 inches, plus or minus 0.5
inches, meaning the robot should stop within this 1-inch range. If the distance to the object is
greater than 9.5 inches, the robot moves forward until the value falls below this threshold.
Conversely, if the object is closer than 8.5 inches, the robot moves backward. Once the robot
positions itself within the range of 8.5 inches to 9.5 inches, it stops and maintains its position
while continuing to track the object. Any deviation from this range causes the robot to adjust its
position accordingly to stay within the desired distance.

For a clearer view of the robot’s transitions and states, refer to Figure 2.

enable = false

]\—‘ w
&, é‘é/@

S

(]

| Line > -0.2
— 5>
Line <-0.2

Figure 2: State Machine Diagram

The control system consists of six different feedback loops to ensure that the robot
operates with optimal precision and stability. The first feedback loop is a PID controller, which is
used to regulate motor speed. The PID controller was selected because of its effectiveness at
handling error correction, providing smooth and responsive control by adjusting the proportional,
integral, and derivate terms. The values of each for the PID being 0.4, 0.3, and 0.1 respectively,
but subject to change in actual testing conditions. Friction compensation is handled by a
proportional controller, which adjusts the motor speed to account for surface variations, with a
gain corresponding to its deadband values, 0.17 and 0.22. Deadband values for each motor were
determined by slowly incremating motor voltage, until motor rotation was achieved.

In addition, the ultrasonic sensor and line follower sensor provide continuous feedback to
adjust the robot’s position. The ultrasonic sensor helps maintain appropriate distance from
obstacles, while the line follower sensor keeps the robot aligned with the black line. For both, a
proportional gain is used of 1. Threshold values were determined by scoping outputs when the
robot was on the track. Lastly, feedback from the left and right motor encoders ensures accurate

tracking of the robot’s position and velocity, allowing for micro-adjustments to maintain precise
movement.

Potential Problems

When implementing the control scheme, several challenges may arise. One of the most
fundamental issues is the potential failure of the state machines to transition properly between
states. This could stem from various causes, with the most likely being mis-calibrated transition
limits. To address this, the system should undergo extensive testing under controlled conditions
to verify that state transitions occur correctly. If discrepancies are found, micro-adjustments can
be made to fine-tune the transition parameters. Additionally, it is essential to thoroughly review
the code to ensure that the state machine includes all necessary states, that states are correctly
labeled, and that transitions are logically defined.

A challenge with the line follower sensor is ensuring accurate interpretation of its
continuous position value, which indicates the robot’s alignment relative to the black line.
Calibration involves testing under real conditions to map sensor outputs to positions such as
centered on the line, partially off, or on the white surface. Environmental factors like lighting can
affect readings, so periodic re-tuning is crucial for consistent performance. The continuous
position data allows for smoother and more precise alignment adjustments. Scopes attached to
the outputs of the line follower sensor blocks in Simulink will allow for testing to be performed
with the robot connected to a personal laptop. Using this setup, critical information for
debugging will be shown as real time sensor readings and robot response can be analyzed.

While the line follower is running, the tracking of the encoder is also taking place.
However, the robot has to make micro-adjustments continuously as the robot is following the
line. This can cause the encoder to have a greater value than is originally anticipated. If it is too
high, then the comparison to know when it needs to transition into object tracking will occur too
soon. To account for this, the average of the two motors encoder values will be taken. This will
then provide a more reasonable number to track for when to transition. Additionally, slight
adjustments to our threshold value corresponding to one lap can be made.

Appendix

Distance (cm)
B Raw Output (v) P
IR Distance Sensor3
ginary 1 S3E ext state Ref
Binary 2
Binary
Gontinuous Position PID(s) signal
2 Comp. signal
Line Follower Sensor3 048
Friction Compensations
L
— 222
Encoder Duo(Quadrature)2 J
—
Motors Interface2
PID(s) signal
Comp. Signal
8
Friction Compensation?

Enable/Resetl

function [next_state, veli, vel2] =

next_state = @;
vell = @;
vel2 = 9;
velocity = 0.
slightTurn =
Turn = 1.2;
sensorSlight = 6.
sensorTurn = 0.6;
Count = 7400;
encoder = (total_il+total_2)/2;

2;

switch state

case @
veli = 0;
vel2 = @;

if enable == true
next_state = 1;
else
next_state = 0;
end

case 1
vell = velocity;
vel2 = velocity;
if encoder > Count
next_state = 6;

fcn(state, dist, enable, line_pos, tota

weSystem variablesk®

%%State Machinexx

%If pressed start

%%Line Following%
%If straight

elseif (line_pos > -sensorSlight) && (line_pos < sensorSlight) %Ro

next_state = 1;

elseif line_pos > sensorSlight %Robot is to slight left of line

next_state = 2;

elseif 1line_pos < -sensorSlight %Robot is to slight right of the 1

next_state = 3;

elseif line_pos > sensorTurn

next_state = 4;

%Robot is to left of line

elseif 1line_pos < -sensorTurn %Robot is to right of the line

next_state = 5;

end
case 2
vell = velocity;
vel2 = velocity*slightTurn;

if line_pos > sensorSlight
next_state = 2;

else
next_state = 1;

end

%If slight left of line

%Robot is to left of line

1.1, total_2)

pbot on line

ine

10

case 3

vell = velocity*slightTurn;

vel2 = velocity;

if line_pos < -sensorSlight
next_state = 3;

else
next_state = 1;

end

case 4 % If left of line

vell = velocity;

vel2 = velocity*Turn;

if line_pos > sensorTurn
next_state = 4;

else
next_state = 1;

end

case 5
vell = velocity*Turn;
vel2 = velocity;
if line_pos < -sensorTurn
next_state = 5;

else
next_state = 1;
end
case 6
vell = @;
vel2 = 9;

%If slight right of line

%Robot is to right of the line

%Robot is to left of line

%If right of line

%Robot is to right of the line

%%0bject Tracking®%
%If Robot within bounds, don't move

if dist > 21.59 && dist < 24.13 %Within range

next_state = 6;
elseif dist > 24.13

next_state = 7;
elseif dist < 21.59

next_state = 8;
end

case 7
vell = velocity;
vel2 = velocity;
if dist > 24.13
next_state = 7;

else
next_state = 6;
end
case 8
vell = -velocity;
vel2 = -velocity;
if dist < 21.59
next_state = 8;
else
next_state = 6;
end

end
end

%Too far

%Too close

%If robot too far from object, move

%Too far

%Within range

%If robot too close from object, mo

%700 close

%¥Within range

forward

ve backwards

11

	Introduction
	Subsystem Characterization
	Proposed Controller Structure and Design
	Potential Problems
	Appendix

